
[Faculty of Science
Information and Computing Sciences]

1

Types & Semantics - Lecture 2

Wouter Swierstra



[Faculty of Science
Information and Computing Sciences]

2

Agda

I A functional language, a bit similar to Haskell

I Implicit arguments

I Flexible syntax: mix�x operators and unicode

I But we can only de�ne total functions



[Faculty of Science
Information and Computing Sciences]

3

Limits of totality

As a result of this last point, we need to be very careful de�ning

functions such as _!!_:

_!!_ : {a : Set} -> Nat -> List a -> Maybe a

n !! xs = ...

Our types can never make promises that we can't keep!



[Faculty of Science
Information and Computing Sciences]

4

Revisiting lookup

Adding the additional Maybe solves our problem.

But now we need to check every call to lookup to see if it is

succesful or not.

But what if we know that the call must succeed.

How do we convince the type checker that lookup can be made

total?



[Faculty of Science
Information and Computing Sciences]

5

Demo



[Faculty of Science
Information and Computing Sciences]

6

Retrospective

I Dependent types allow us to freely mix values and types.

I Totality is important: type checker performs evaluation and

we want to trust our proofs!

I Pattern matching on dependent types is very subtle.


