APA
 Abstract Interpretation

Jurriaan Hage
e-mail: J.Hage@uu.nl
homepage: http://www.cs.uu.nl/people/jur/

Department of Information and Computing Sciences, Universiteit Utrecht
May 31, 2016

1. Abstract interpretation

Abstract Interpretation

Abstract Interpretation

analysis as a simplification of running a computer program.

- During program execution we compute the values of variables.
- And our location in the program.
- During abstract interpretation we might
- compute only the signs of integer variables,
- compute where closures are created, but not the closures themselves,
- compute only the lengths of lists,
- compute only the types of variables.
- Typically, but not necessarily, we compute this for any given location.
- The right simplification depends on the analysis we are attempting.
- For certain "good" abstract interpretations, soundness of the analysis follows "immediately" from the soundness of the semantics of the language.
- The latter needs to be proved only once, but many analyses may benefit.
- Semantics must be formally defined.
- E.g., operational semantics, i.e., specification of interpreter
- Since static analyses must be sound for all executions, we need a collecting semantics for the language.
- Abstracting to a complete lattice with ACC gives guarantee of termination.

The State is everything

- An interpreter keeps track of the state of the program.
- Usually it contains:
- What program point are we at?
- For every variable, what value does it currently have?
- What does the stack look like?
- What is allocated on the heap?
- For an imperative languages (While) without procedures we track only the program point and the variables to value mapping.
- To deal with procedures, also track the stack.
- The state is determined by the language constructs we support.
- Adding new implies the need to keep track of the heap.
- For the moment, we assume

$$
\text { State }=\mathbf{L a b} \times(\text { Var } \rightarrow \text { Data })
$$

where Data typically contains integers, reals and booleans.

- In abstract interpretation we simplify the state.
- And operations on the state should behave consistently with the abstraction.
- What if the state is already so information poor that the information we want is not in the state to begin with?
- Our state

$$
\text { State }=\mathbf{L a b} \times(\text { Var } \rightarrow \text { Data })
$$

has only momentaneous information:

- It does not record dynamic information for the program, e.g., executions.
- Many program analyses concern dynamic properties.
- Examples:
- Record the minimum and maximum value an integer identifier may take.
- In a dynamically typed language: compute all types a variable may have.
- Record all the function abstractions an identifier might evaluate to.
- Record the set of pairs (x, ℓ) in case x may have gotten its last value at program point ℓ.
- We must first enrich the state to hold this information.

Single execution versus all executions

- Static analysis results should hold for all runs.
- Code is only dead if all executions avoid it.
- An interpreter considers only a single execution at the time.
- Redefine semantics to specify all executions "in parallel".
- This is called a collecting semantics.
- Static analysis is on a simplified version (abstraction) of the collecting semantics.
- Because, usually, the collecting semantics is very infinite.
- A collecting semantics for While might record sets of execution histories:

State $=\mathcal{P}([($ Lab, Maybe $($ Var, Data $))])$

- Example: if $[\mathrm{x}>0]^{1}$ then $[\mathrm{y}:=-3]^{2}$ else [skip] ${ }^{3}$
- $\{[(?$, Just $(x, 0)),(?$, Just $(y, 0)),(1$, Nothing $),(3$, Nothing $)]$,
$[(?$, Just $(x, 2)),(?$, Just $(y, 0)),(1$, Nothing $),(2$, Just $(y,-3))]$
- Consider State $=\mathbf{L a b} \rightarrow \mathcal{P}($ Var \rightarrow Data $)$.
- Sets of functions telling us what values variables can have right before a given program point.
- We repeat: if $[\mathrm{x}>0]^{1}$ then $[\mathrm{y}:=-3]^{2}$ else $[\text { skip }]^{3}$
- For the above program we have (given the initial values): $[1 \mapsto\{[x \mapsto 0, y \mapsto 0],[x \mapsto 2, y \mapsto 0]\}$, $2 \mapsto\{[x \mapsto 2, y \mapsto 0]\}, 3 \mapsto\{[x \mapsto 0, y \mapsto 0]\}]$
- At the end of the program, we have $\{[x \mapsto 2, y \mapsto-3],[x \mapsto 0, y \mapsto 0]\}$
- The semantics does not record that $[x \mapsto 2, y \mapsto 0]$ leads to $[x \mapsto 2, y \mapsto-3]$.
- Also track the heap and/or stack (if the language needs it).
- In an instrumented semantics information is stored that does not influence the outcome of the execution.
- For example, timing information.
- Choose one which is general enough to accommodate all your analyses.
- You cannot analyze computation times if there is no information about it in your collecting semantics
- We cannot compute all the states for an arbitrary program: it might take an infinite amount of time and space.
- We now must simplify the semantics.
- How far?
- Trade-off between resources and amount of detail.
- The least one can demand is that analysis time is finite.
- In some cases, we have to give up more detail than we can allow.
- Therefore: widening

Example abstractions

- We take $\mathcal{P}($ Var \rightarrow Data) as a starting point.
- Example: $S=\{[x \mapsto 2, y \mapsto 0],[x \mapsto-2, y \mapsto 0]\}$
- Abstract to Var $\rightarrow \mathcal{P}$ (Data) (relational to independent):
- S now becomes $[x \mapsto\{-2,2\}, y \mapsto\{0\}]$.
- Abstract further to intervals $[x, y]$ for $x \leq y$:
- S now becomes represented by $[x \mapsto[-2,2], y \mapsto[0,0]]$
- Abstract further to $\operatorname{Var} \rightarrow \mathcal{P}(\{0,-,+\})$:
- S now becomes $[x \mapsto\{-, 0,+\}, y \mapsto\{0\}]$.
- Mappings are generally not injective:
$\{[x \mapsto 2, y \mapsto 0],[x \mapsto-2, y \mapsto 0],[x \mapsto 0, y \mapsto 0]\}$ also maps to $[x \mapsto\{-, 0,+\}, y \mapsto\{0\}]$.
- Consider: you have an interpreter for your language.
- It knows how to add integers, but not how to add signs.
- Would be great if the operators followed immediately from the abstraction.
- This is the case, but the method is not constructive:
- How to (effectively) compute $\{-\}+{ }_{S}\{-\}$ in terms of + for integers?
- It does give a correctness criterion for the abstracted operators: the result of $\{-\}+S\{-\}$ must include - .
- Consider abstraction from

$$
\begin{gathered}
\mathbf{L a b} \rightarrow \mathcal{P}(\mathbf{V a r} \rightarrow \mathbf{Z}) \\
\text { to } \\
\mathbf{L a b} \rightarrow \mathbf{V a r} \rightarrow \mathcal{P}(\{0,-,+\}) .
\end{gathered}
$$

- When we add integers, the result is deterministic: two integers go in, one comes out.
- If we add signs + and - , then we must get $\{+, 0,-\}$.
- The abstract add is non-deterministic.
- Another reason for working with sets of abstractions of integers.
- We already needed those to deal with sets of executions.

Connecting back to dataflow analysis

- Practically, Abstract Interpretation concerns itself with the "right" choice of lattice, and how to compute safely with its elements.
- Assume semantics is $L=\mathbf{L a b}_{*} \rightarrow \mathcal{P}\left(\mathbf{V a r}_{*} \rightarrow \mathbf{Z}\right)$ where \sqsubseteq is elementwise \subseteq.
- Forms a complete lattice, but does not satisfy ACC!
- For Constant Propagation, abstract L to

$$
M=\mathbf{L a b}_{*} \rightarrow\left(\mathbf{V a r}_{*} \rightarrow \mathbf{Z}^{\top}\right)_{\perp} \text { with } \mathbf{Z}^{\top}=\mathbf{Z} \cup\{\top\}
$$

- M does have ACC.
- Recall:

$$
\begin{aligned}
& L=\mathbf{L a b}_{*} \rightarrow \mathcal{P}\left(\mathbf{V a r}_{*} \rightarrow \mathbf{Z}\right) \\
& M=\mathbf{L a b}_{*} \rightarrow\left(\mathbf{V a r}_{*} \rightarrow \mathbf{Z}^{\top}\right)_{\perp} \text { with } \mathbf{Z}^{\top}=\mathbf{Z} \cup\{\top\}
\end{aligned}
$$

- For each label, $\alpha: L \rightarrow M$ maps \emptyset to \perp, collects all values for a given variable together in a set and then maps $\{i\}$ to i and others to T.
- Example:

$$
\begin{aligned}
\alpha(f)= & {[1 \mapsto[x \mapsto \top, y \mapsto 0], 2 \mapsto[x \mapsto 8, y \mapsto 1]] } \\
\text { where } f= & {[1 \mapsto\{[x \mapsto-8, y \mapsto 0],[x \mapsto 8, y \mapsto 0]\},} \\
2 & \mapsto\{[x \mapsto 8, y \mapsto 1]\}]
\end{aligned}
$$

- Afterwards, if necessary, transform the solution back to one for L.
- Transformation by concretization function γ from M to L.
- Let $m=[1 \mapsto[x \mapsto \top, y \mapsto 0], 2 \mapsto[x \mapsto 8, y \mapsto 1]]$.
- Then $\gamma(m)=[1 \mapsto\{[x \mapsto a, y \mapsto 0] \mid a \in \mathbf{Z}\}$,

$$
2 \mapsto\{[x \mapsto 8, y \mapsto 1]\}]
$$

- Note: $\gamma(m)$ is infinite!
- But the original concrete value was not.
- If α and γ have certain properties then abstraction may lose precision, but not correctness.

2. Galois Connections and Galois Insertions

- Not every combination of abstraction and concretization function is "good".
- When we abstract, we prefer the soundness of the concrete lattice to be inherited by the abstract one.
- In particular, the soundness of an analysis derives from the soundness of the collecting operational semantics.
- NB: executing the collecting operational semantics is also a sort of analysis.
- The Cousots defined when this is the case.
- These abstractions are termed Galois Insertions
- Slightly more general, Galois Connections aka adjoints.
- Abstraction can be a stepwise process.
- In the end everything relates back to the soundness of the collecting semantics.

Abstraction and concretization

- Let $L=(\mathcal{P}(\mathbf{Z}), \subseteq)$ and $M=(\mathcal{P}(\{0,+,-\}), \subseteq)$.
- Let $\alpha: L \rightarrow M$ be the abstraction function defined as

$$
\alpha(S)=\{\operatorname{sign}(z) \mid z \in S\} \text { where }
$$

$$
\operatorname{sign}(x)=0 \text { if } x=0,+ \text { if } x>0 \text { and }- \text { if } x<0 .
$$

- For example: $\alpha(\{0,2,20,204\})=\{0,+\}$ and $\alpha(O)=\{-,+\}$ where O is the set of odd numbers.
- Obviously, α is monotone: if $x \subseteq y$ then $\alpha(x) \subseteq \alpha(y)$.

Abstraction and concretization

- Let $L=(\mathcal{P}(\mathbf{Z}), \subseteq)$ and $M=(\mathcal{P}(\{0,+,-\}), \subseteq)$.
- The concretization function γ is defined by:

$$
\begin{aligned}
\gamma(T)= & \{1,2, \ldots \mid+\in T\} \\
& \cup\{\ldots,-2,-1 \mid-\in T\} \\
& \cup\{0 \mid 0 \in T\}
\end{aligned}
$$

- Again, obviously, γ monotone.
- Monotonicity of α and γ and two extra demands make (L, α, γ, M) into a Galois Connection.

- α removes detail, so when going back to L we expect to lose information.
- Gaining information would be non-monotone.
- Demand 1: for all $c \in L, c \sqsubseteq_{L} \gamma(\alpha(c))$
- For the set O of odd numbers,
$O \subseteq \gamma(\alpha(O))=\gamma(\{+,-\})=\{\ldots,-2,-1,1,2, \ldots\}$
- What about $\alpha(\gamma(\alpha(c)))$? It equals $\alpha(c)$.

- Demand 2: for all $a \in M, \alpha(\gamma(a)) \sqsubseteq_{M} a$
- Dual version of demand 1.
- Abstracting the concrete value of an abstract values gives a lower bound of the abstract value.
- For $a=\{+, 0\} \in M, \alpha(\gamma(a))=\alpha(\{0,1,2, \ldots\})=\{0,+\}$
- What about $\gamma(\alpha(\gamma(a)))$? It equals $\gamma(a)$.

Galois Insertions

- Sometimes Demand 2 becomes

Demand 2': for all $a \in M, \alpha(\gamma(a))=a$.

- It is then called a Galois Insertion.
- Often a Connection is an Insertion, but not always.
- A Connection can always be made into an Insertion
- Remove values from abstract domain that cannot be reached.

A Connection that is not an Insertion

- Consider the complete lattices $L=(\mathcal{P}(\mathbf{Z}), \subseteq)$ and $M=\mathcal{P}(\{0,+,-\} \times\{$ odd, even $\}, \ldots)$ and the obvious abstraction $\alpha: L \rightarrow M$.
- Concretization: what is $\gamma(\{(0$, odd $),(-$, even $)\})$?
- Consider the complete lattices $L=(\mathcal{P}(\mathbf{Z}), \subseteq)$ and $M=\mathcal{P}(\{0,+,-\} \times\{$ odd, even $\}, \ldots)$ and the obvious abstraction $\alpha: L \rightarrow M$.
- Concretization: what is $\gamma(\{(0$, odd $),(-$, even $)\})$?
- What happens to (0 , odd)? We ignore it!
- Abstracting back:

$$
\alpha(\gamma(\{(0, \text { odd }),(-, \text { even })\})) \text { gives }\{(-, \text { even })\}
$$

and note that

$$
\{(-, \text { even })\} \subset\{(0, \text { odd }),(-, \text { even })\}
$$

- Why be satisfied before you have na Insertion?
- The Connection may be much easier to specify.

- Now α and γ are total functions between L and M.
- Abstraction of less gives less: $c \sqsubseteq \gamma(a)$ implies $\alpha(c) \sqsubseteq a$.
- Concretization of more gives more: $\alpha(c) \sqsubseteq a$ implies $c \sqsubseteq \gamma(a)$.
- Together: (L, α, γ, M) is an adjoint.
- Thm: adjoints are equivalent to Galois Connections.

Some (related) example abstractions

- Reachability:
$M=\mathbf{L a b}_{*} \rightarrow\{\perp, \top\}$ where
\perp describes "not reachable",
\top describes "might be reachable".
- Undefined variable analysis:
$M=\mathbf{V a r}_{*} \rightarrow\{\perp, \top\}$ where
\top describes "might get a value",
\perp describes "never gets a value".
- Undefined before use analysis:

$$
M=\mathbf{L a} \mathbf{b}_{*} \rightarrow \mathbf{V a r}_{*} \rightarrow\{\perp, \top\}
$$

Combinators for Galois Connections

- Building Galois Connections from smaller ones.
- Reuse to save on proofs and implementations.
- Quick look at:
- composition of Galois Connections,
- total function space,
- independent attribute combination,
- direct product.
- Construct a Galois Connection from the collecting semantics

$$
L=\mathbf{L a b}_{*} \rightarrow \mathcal{P}\left(\mathbf{V a r}_{*} \rightarrow \mathbf{Z}\right)
$$

to

$$
M=\mathbf{L a b}_{*} \rightarrow \mathbf{V a r}_{*} \rightarrow \text { Interval }
$$

- M can be used for Array Bound Analysis:
- Of interest are only the minimal and maximal values.
- First we abstract L to $T=\mathbf{L a b}_{*} \rightarrow \mathbf{V a r}_{*} \rightarrow \mathcal{P}(\mathbf{Z})$, and then T to M.
- The abstraction α from L to M is the composition of these two.
- The intermediate Galois Connections are built using the total function space combinator.

Galois Connection/Insertion composition

- The general picture:

- The composition of the two can be taken directly from the picture:

$$
\left(L, \alpha_{2} \circ \alpha_{1}, \gamma_{1} \circ \gamma_{2}, M\right)
$$

- Thm: always a Connection (Insertion) if the two ingredients are Connections (Insertions)
- $L=\mathbf{L a b}_{*} \rightarrow \mathcal{P}\left(\mathbf{V a r}_{*} \rightarrow \mathbf{Z}\right)$ is a relational lattice, $T=\mathbf{L a} \mathbf{b}_{*} \rightarrow \mathbf{V} \mathbf{a r}_{*} \rightarrow \mathcal{P}(\mathbf{Z})$ is only suited for independent attribute analysis.
- This kind of step occurs quite often: define separately for reuse.
- Example:

$$
[1 \mapsto\{[x \mapsto 2, y \mapsto-3],[x \mapsto 0, y \mapsto 0]\}]
$$

should abstract to

$$
[1 \mapsto[x \mapsto\{0,2\}, y \mapsto\{-3,0\}]] .
$$

- We first try to get from

$$
\begin{aligned}
& L^{\prime}=\mathcal{P}\left(\mathbf{V a r}_{*} \rightarrow \mathbf{Z}\right) \text { to } \\
& T^{\prime}=\mathbf{V a r}_{*} \rightarrow \mathcal{P}(\mathbf{Z}) .
\end{aligned}
$$

- "Add" back the $\mathbf{L a b}{ }_{*}$ by invoking the total function space combinator.
- Start by finding a Galois Connection $\left(\alpha_{1}^{\prime}, \gamma_{1}^{\prime}\right)$ from $L^{\prime}=\mathcal{P}\left(\mathbf{V a r}_{*} \rightarrow \mathbf{Z}\right)$ to $T^{\prime}=\mathbf{V a r}_{*} \rightarrow \mathcal{P}(\mathbf{Z})$.
- $\{[x \mapsto 2, y \mapsto-3],[x \mapsto 0, y \mapsto 0]\}$ should abstract to $[x \mapsto\{0,2\}, y \mapsto\{-3,0\}]$.
- $\alpha_{1}^{\prime}(S)=\lambda v .\{z \mid \exists f \in S . z=f(v)\}$
- Collect for each variable v all the values it maps to.

Concretization

- $L^{\prime}=\mathcal{P}\left(\mathbf{V a r}_{*} \rightarrow \mathbf{Z}\right)$ $T^{\prime}=\mathbf{V a r}_{*} \rightarrow \mathcal{P}(\mathbf{Z})$.
- γ_{1}^{\prime} unfolds sets of values to sets of functions, - simply by taking all combinations.
- From $[x \mapsto\{0,2\}, y \mapsto\{-3,0\}]$ we obtain

$$
\begin{array}{r}
\{[x \mapsto 2, y \mapsto-3],[x \mapsto 0, y \mapsto 0], \\
[x \mapsto 2, y \mapsto 0],[x \mapsto 0, y \mapsto-3]\}
\end{array}
$$

- Let $\left(L^{\prime}, \alpha_{1}^{\prime}, \gamma_{1}^{\prime}, T^{\prime}\right)$ be the Galois Connection just constructed.
- How can we obtain a Galois Connection $\left(L, \alpha_{1}, \gamma_{1}, T\right)$?
- Use the total function space combinator.
- For a fixed set, say $S=\mathbf{L a b}_{*},\left(L^{\prime}, \alpha_{1}^{\prime}, \gamma_{1}^{\prime}, T^{\prime}\right)$ is transformed into a Galois Connection between $L=S \rightarrow L^{\prime}$ and $T=S \rightarrow T^{\prime}$.
- L and T are complete lattices if L^{\prime} and T^{\prime} are (App. A).
- The construction builds α_{1} and γ_{1} out of α_{1}^{\prime} and γ_{1}^{\prime}.
- Apply primed versions pointwise:
- For each $\phi \in L: \alpha_{1}(\phi)=\alpha_{1}^{\prime} \circ \phi \quad$ (see also p . 96)
- Similarly, for each $\psi \in T: \gamma_{1}(\psi)=\gamma_{1}^{\prime} \circ \psi$.
- What remains is getting from

$$
T=\mathbf{L a b}_{*} \rightarrow \mathbf{V a r}_{*} \rightarrow \mathcal{P}(\mathbf{Z}) \text { to }
$$

$$
M=\mathbf{L a b}_{*} \rightarrow \mathbf{V a r}{ }_{*} \rightarrow \text { Interval. }
$$

- Intervals: $\perp=[\infty,-\infty],[0,0],[-\infty, 2]$, $\top=[-\infty, \infty]$.
- Abstraction from $\mathcal{P}(\mathbf{Z})$ to Interval:
- if set empty take \perp,
- find minimum and maximum,
- if minimum undefined: take $-\infty$,
- if maximum undefined: take ∞.
- Invoke total function space combinator twice to "add" $\mathbf{L a b} \mathbf{B}_{*}$ and $\mathbf{V a r}_{*}$ on both sides.
- Starting from the lattice $\mathcal{P}(\mathbf{Z})$ we can abstract to $M_{1}=\mathcal{P}(\{$ odd, even $\})$ and $M_{2}=\mathcal{P}(\{-, 0,+\})$.
- Combine the two into one Galois Connection between $L=\mathcal{P}(\mathbf{Z})$ and $M=\mathcal{P}(\{$ odd, even $\}) \times \mathcal{P}(\{-, 0,+\})$.
- Given that we have $\left(L, \alpha_{1}, \gamma_{1}, M_{1}\right)$ and $\left(L, \alpha_{2}, \gamma_{2}, M_{2}\right)$ we obtain ($L, \alpha, \gamma, M_{1} \times M_{2}$) where
- $\alpha(c)=\left(\alpha_{1}(c), \alpha_{2}(c)\right)$ and
- $\gamma\left(a_{1}, a_{2}\right)=\gamma_{1}\left(a_{1}\right) \sqcap \gamma_{2}\left(a_{2}\right)$
- Why take the meet (greatest lower bound)?
- Starting from the lattice $\mathcal{P}(\mathbf{Z})$ we can abstract to $M_{1}=\mathcal{P}(\{$ odd, even $\})$ and $M_{2}=\mathcal{P}(\{-, 0,+\})$.
- Combine the two into one Galois Connection between $L=\mathcal{P}(\mathbf{Z})$ and $M=\mathcal{P}(\{$ odd, even $\}) \times \mathcal{P}(\{-, 0,+\})$.
- Given that we have $\left(L, \alpha_{1}, \gamma_{1}, M_{1}\right)$ and $\left(L, \alpha_{2}, \gamma_{2}, M_{2}\right)$ we obtain ($L, \alpha, \gamma, M_{1} \times M_{2}$) where
- $\alpha(c)=\left(\alpha_{1}(c), \alpha_{2}(c)\right)$ and
- $\gamma\left(a_{1}, a_{2}\right)=\gamma_{1}\left(a_{1}\right) \sqcap \gamma_{2}\left(a_{2}\right)$
- Why take the meet (greatest lower bound)?
- It enables us to ignore combinations $\left(a_{1}, a_{2}\right)$ that cannot occur.
- $\gamma((\{$ odd $\},\{0\}))=\gamma_{1}(\{$ odd $\}) \cap \gamma_{2}(\{0\})$

$$
=\{\ldots,-1,1, \ldots\} \cap\{0\}=\emptyset .
$$

The independent attribute method (tupling)

- Example: $L_{1}=L$ and $M_{1}=M$, and M_{2} is some abstraction of L_{2} which describes the state of the heap at different program points.
- Define α and γ between $L_{1} \times L_{2}$ and $M_{1} \times M_{2}$ as follows:
- $\alpha\left(c_{1}, c_{2}\right)=\left(\alpha_{1}\left(c_{1}\right), \alpha_{2}\left(c_{2}\right)\right)$
- $\gamma\left(a_{1}, a_{2}\right)=\left(\gamma_{1}\left(a_{1}\right), \gamma_{2}\left(a_{2}\right)\right)$.
- Abstractions are done independently.

3. Widening

Array Bound Analysis

- We abstracted from $L=\mathbf{L a b}_{*} \rightarrow \mathcal{P}\left(\mathbf{V a r}_{*} \rightarrow \mathbf{Z}\right)$ to $M=\mathbf{L a b}_{*} \rightarrow \mathbf{V a r}_{*} \rightarrow$ Interval.
- M is a prime candidate for Array Bound Analysis:

At every program point, determine the minimum and maximum value for every variable.

M has its problems

- Consider the program

$$
\begin{aligned}
& {[\mathrm{x}:=0]^{1}} \\
& \text { while }[\mathrm{x}>=0]^{2} \text { do } \\
& \quad[\mathrm{x}:=\mathrm{x}+1]^{3} ;
\end{aligned}
$$

- The intervals for x in Analysis ${ }_{\circ}$ (2) turn out to be

$$
[0,0] \sqsubseteq[0,1] \sqsubseteq[0,2] \sqsubseteq[0,3] \sqsubseteq \ldots
$$

- Not having ACC prevents termination.
- When the loop is bounded (e.g., $[\mathrm{x}<10000]^{2}$) convergence to $[0,10001]$ takes a long time.

Consider the options

- Two ways out:
- abstract M further to a lattice that does have ACC, or
- ensure all infinite chains in M are traversed in finite time.
- In this case, there does not seem to be any further abstraction possible.
- So let's consider the second: widening.
- Widening \approx a non-uniform coarsening of the lattice.
- We promise not to visit some parts of the lattice.
- Which parts typically depends on the program.
- Essentially making larger skips along ascending chains than necessary.
- This buys us termination.
- But we pay a price: no guarantee of a least fixed point.
- By choosing a clever widening we can hope it won't be too bad.
- Consider the following program:

```
int i, c, n,
int A[20], C[], B[];
C = new int[9];
input n; B = new int[n];
if (A[i] < B[i]) then
        C[i/2] = B[i];
```

- Which bound checks are certain to succeed?
- Arrays A and C have static sizes, which can be determined 'easily' (resizing is prohibited).
- Therefore: find the possible values of i.
- If always $i \in[0,17]$, then omit checks for A and C.
- If always $i \in[0,19]$, then omit checks for A.
- Nothing to be gained for B : it is dynamic.

The key realization

- For the arrays A and C , the fact $\mathrm{i} \in[-20,300]$ is (almost) as bad as $[-\infty, \infty]$.
- Why then put such large intervals in the lattice?
- Widening allows us to tune (per program) what intervals are of interest.

What intervals are interesting?

- Consider, for simplicity, the set of all constants C in a program P.
- Includes those that are used to define the sizes of arrays.
- What if, when we join two intervals, we consider as result only intervals, the boundaries of which consist of values taken from $C \cup\{-\infty, \infty\}$?
- To keep it safe, every value over $\sup (C)$ must be mapped to ∞, and below $\inf (C)$ to $-\infty$.
- A program has only a finite number of constants: number of possible intervals for every program point is now finite.
- Which constants work well depends on how the arrays are addressed: $\mathrm{A}[2 * i+j]=\mathrm{B}[3 * i]-\mathrm{C}[i]$
- Variations can be made: take all constants plus or minus one, etc. etc.
- In a language like Java and C all arrays are zero-indexed
- Consider only positive constants (A [-i]?).
- What works well can only be empirically established.

Back to the lattice

- $\operatorname{Red}(f)=\{x \mid f(x) \sqsubseteq x\}$
- $\operatorname{Ext}(f)=\{x \mid x \sqsubseteq f(x)\}$ and
- $\operatorname{Fix}(f)=\operatorname{Red}(f) \cap \operatorname{Ext}(f)$.

Universiteit Utrecht

Back to the lattice

- Start from \perp so that we obtain the least fixed point.
- Another possibility is to start in T and move down. Whenever we stop, we are safe.
- But....no guarantee that we reach Ifp

Pictorial view of widening

- Widening: replace \sqcup with a widening operator ∇ (nabla).
- ∇ is an upper bound operator, but not least: for all $l_{1}, l_{2} \in L: l_{1} \sqcup l_{2} \sqsubseteq l_{1} \nabla l_{2}$.
- The point: take larger steps in the lattice than is necessary.
- Not precise, but definitely sound.

How widening affects sequences

- Consider a sequence

$$
l_{0}, l_{1}, l_{2}, \ldots
$$

- Note: any sequence will do.
- Under conditions, it becomes an ascending chain

$$
l_{0} \sqsubseteq l_{0} \nabla l_{1} \sqsubseteq\left(l_{0} \nabla l_{1}\right) \nabla l_{2} \sqsubseteq \ldots
$$

- that is guaranteed to stabilize.
- Stabilization point is known to be a reductive point,
- I.e. a sound solution to the constraints

How widening affects sequences

- Consider a sequence

$$
l_{0}, l_{1}, l_{2}, \ldots
$$

- Note: any sequence will do.
- Under conditions, it becomes an ascending chain

$$
l_{0} \sqsubseteq l_{0} \nabla l_{1} \sqsubseteq\left(l_{0} \nabla l_{1}\right) \nabla l_{2} \sqsubseteq \ldots
$$

- that is guaranteed to stabilize.
- Stabilization point is known to be a reductive point,
- I.e. a sound solution to the constraints
- but is not always a fixed point. Bummer.

What it takes to be ∇

- Let a lattice L be given and ∇ a widening operator, i.e.,
- for all $l_{1}, l_{2} \in L: l_{1} \sqsubseteq l_{1} \nabla l_{2} \sqsupseteq l_{2}$, and
- for all ascending chains $\left(l_{i}\right)$, the ascending chain $l_{0}, l_{0} \nabla l_{1},\left(l_{0} \nabla l_{1}\right) \nabla l_{2}, \ldots$ eventually stabilizes.
- The latter seems a rather selffulfilling property.

Iterating with ∇

- How can we use ∇ to find a reductive point of a function?
- $f_{\nabla}^{n}=\left\{\begin{array}{l}\perp \\ f_{\nabla}^{n-1} \\ f_{\nabla}^{n-1} \nabla f\left(f_{\nabla}^{n-1}\right)\end{array}\right.$
if $n=0$
if $n>0 \wedge f\left(f_{\nabla}^{n-1}\right) \sqsubseteq f_{\nabla}^{n-1}$
otherwise
- First argument represents all previous iterations, second represents result of new iteration.

An example

- Define ∇_{C} to be the following upper bound operator: $\left[i_{1}, j_{1}\right] \nabla_{C}\left[i_{2}, j_{2}\right]=\left[\operatorname{LB}_{C}\left(i_{1}, i_{2}\right), \operatorname{UB}_{C}\left(j_{1}, j_{2}\right)\right]$ where
- $\mathrm{LB}_{C}\left(i_{1}, i_{2}\right)=i_{1}$ if $i_{1} \leq i_{2}$, otherwise
- $\mathrm{LB}_{C}\left(i_{1}, i_{2}\right)=k$ where $k=\max \left\{x \mid x \in C, x \leq i_{2}\right\}$ if $i_{2}<i_{1}$
- Define ∇_{C} to be the following upper bound operator: $\left[i_{1}, j_{1}\right] \nabla_{C}\left[i_{2}, j_{2}\right]=\left[\operatorname{LB}_{C}\left(i_{1}, i_{2}\right), \operatorname{UB}_{C}\left(j_{1}, j_{2}\right)\right]$ where
- $\mathrm{LB}_{C}\left(i_{1}, i_{2}\right)=i_{1}$ if $i_{1} \leq i_{2}$, otherwise
- $\mathrm{LB}_{C}\left(i_{1}, i_{2}\right)=k$ where $k=\max \left\{x \mid x \in C, x \leq i_{2}\right\}$ if $i_{2}<i_{1}$
- And similar for UB_{C}.
- Exception: $\perp \nabla_{C} I=I=I \nabla_{C} \perp$.
- Essentially, only the boundaries of the first argument interval, values from C, and $-\infty$ and ∞ are allowed as boundaries of the result.
- Let $C=\{3,5,100\}$. Then
- $[0,2] \nabla_{C}[0,1]=[0,2]$
- $[0,2] \nabla_{C}[-1,2]=[-\infty, 2]$
- $[0,2] \nabla_{C}[1,14]=[0,100]$

Ascending chains will stabilize

- Intuition by example.
- Consider the chain $[0,1] \sqsubseteq[0,2] \sqsubseteq[0,3] \sqsubseteq[0,4] \ldots$ and choose $C=\{3,5\}$.
- From it we obtain the stabilizing chain:

$$
\begin{aligned}
& {[0,1] } \\
{[0,1] \nabla_{C}[0,2] } & =[0,3] \\
{[0,3] \nabla_{C}[0,3] } & =[0,3] \\
{[0,3] \nabla_{C}[0,4] } & =[0,5] \\
{[0,5] \nabla_{C}[0,5] } & =[0,5] \\
{[0,5] \nabla_{C}[0,6] } & =[0, \infty] \\
{[0, \infty] \nabla_{C}[0,7] } & =[0, \infty], \ldots
\end{aligned}
$$

- Essentially, we fold ∇_{C} over the sequence.

Analyzing the infinite loop

- Recall the program

$$
\begin{aligned}
& {[\mathrm{x}:=0]^{1}} \\
& \text { while }[\mathrm{x}>=0]^{2} \text { do } \\
& \qquad[\mathrm{x}:=\mathrm{x}+1]^{3} ;
\end{aligned}
$$

- Iterating with ∇_{C} with $C=\{3,5\}$ gives

$A_{\circ}(1)$	\perp	\perp	\perp	\perp	\perp	\perp
$A_{\bullet}(1)$	\perp	$[0,0]$	$[0,0]$	$[0,0]$	$[0,0]$	$[0, \mathrm{c}$
$A_{\circ}(2)$	\perp	$[0,0]$	$[0,0] \nabla_{C}[1,1]=[0,3]$	$[0,5]$	$[0, \infty]$	$[0, \infty$
$A_{\bullet}(2)$	\perp	$[0,0]$	$[0,3]$	$[0,5]$	$[0, \infty]$	$[0, \infty$
$A_{\circ}(3)$	\perp	$[0,0]$	$[0,3]$	$[0,5]$	$[0, \infty]$	$[0, \infty$
$A_{\bullet}(3)$	\perp	$[1,1]$	$[1,4]$	$[1,6]$	$[1, \infty]$	$[1, \infty$

- Note: not all interval boundaries are values from C
- Widening operator ∇ replaces join \sqcup :
- Bigger leaps in lattice guarantee stabilisation.
- guarantees reductive point, not necessarily a fixed point
- Widening operator: verify the two properties.
- Any complete lattice supports a range of widening operators. Balance cost and coarseness.
- Widening operator often a-symmetric: the first operand is treated more respectfully.
- Widening usually parameterized by information from the program:
- C is the set of constants occuring in the program.
- We visit a finite, program dependent part of the lattice.

