
Types and Semantics

Assignment Type and Effect Systems

May 30, 2016

Our starting point for this assignment is the control-flow analysis that we defined
for a functional language in the lectures. We use a slightly modified syntax (in order
to correspond to the notation of the book of Nielson, Nielson and Hankin).

The (abstract) syntax is given by

e ::= n | b | x | fnπ x => e0 | funπ f x => e0 | e1 e2
| if e0 then e1 else e2 | let x = e1 in e2 | e1 op e2

In this case, fun denotes a recursive function definition, where f is the name
used for the recursive invocation. Contrary to the book chapter I have distinguished
numerical and boolean constants.

For this language, the book and (if you adapt to the different syntax) the slides
provide a definition of a control-flow analysis. We use as our starting point the
system that has the separate subeffecting rule that avoids poisoning.

The assignment consists of a few steps:

i. Implement this analysis in Haskell, following the slides/book as closely as
possible. The trickiest part will probably be how to deal with the non-syntax
directed subeffecting rule.

ii. Adapt the analysis to deal with pairs and lists (following Nielson, Nielson and
Hankin, mini-project 5.2): redefine e to add

e ::= .. | Pairπ(e1, e2) | pcase e0 of Pair(x1, x2) => e1

Two things you need to take into account: (1) if we store a function in a pair,
retrieve the function from the pair, and apply that function, we want to know
where that function could have been defined. And (2), for every pattern match
on a pair, we want to know at which program locations that pair could have
been constructed (so control-flow now includes data-flow).

1

iii. To the result of the previous part add syntax for lists:

e ::= .. | Consπ(e1, e2) | Nilπ | lcase e0 of Cons(x1, x2) => e1 or e2

and repeat your treatment.

iv. Change your type system specification to deal with general datatypes:

e ::= Cπ(e1, · · · , en) | case e0 of C(x1, · · · , xn) => e1 or x => e2

Here C ∈ Constr denotes an n-ary data constructor (partial application not
allowed!). This type rule need not be implemented. The rule should generalize
the rules you invented for lists and pairs. NB. the case statement takes care of
one constructor at the time, if a given datatype has more than two constructors
then nested cases should be used by the programmer.

Note that to do the analysis, you also need to extend the type inferencer to deal
with these extensions. I leave it up to you to come up with new types for these
constructs.

Deliverables: (1) an implementation of the analysis for the base language with
support for pairs and lists, (2) a small set of programs that shows that your imple-
mentation behaves as it should (of course, these should include uses of pairs, lists,
all other constructs, including a non-trivial example in which functions are stored
in and extracted from lists), and (3) a pdf that provides and explains the type rules
you used for the parts (ii), (iii) and (iv), possible other changes you made to the
other types rules and syntax of types to accommodate your adaptations, and a short
description that explains how to compile and run your program.

Bonuspoint: if you want, you can get a bonuspoint by implementing a poly-
variant analysis. Do this only if you have time after finishing the above.
Construct the polyvariant version side-by-side with the monovariant one by first
cloning the monovariant version and then modifying it. Do not forget to include
a few examples for the polyvariant version that show that indeed polyvariance has
been implemented and works. Make clear in your documentation that you have
attempted the polyvariant analysis and how to compile and use it.
NB1. If by adding your bonuspoint to your score you obtain more than 10 points,
your grade will be 10.
NB2. a base implementation with a parser for the Fun language can be downloaded
from the website. The implementation was adapted from a submission made by
Pepijn Kokke and Wout Elsinghorst.

Good luck.

2

